我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:王中王 > 定量图像分析 >

病理市场能否成为AI初创企业新出口?

归档日期:04-30       文本归类:定量图像分析      文章编辑:爱尚语录

  近日,美国数字病理学初创公司Paige.AI通过人工智能诊断癌症获得了FDA授予的“突破性设备”称号,这家成立不足2年的公司接手了斯隆-凯特琳癌症中心(MSKCC)独家授权的400多万个包含病理学信息和电子病理的档案,这些数据给予了它改变世界的可能。很明显,它抓住了这个机会。

  反观国内,医学影像作为计算机视觉中的子应用已被广泛应用于放射领域,依图医疗、推想科技、深睿医疗、体素科技等瞄准放射科的人工智能影像企业已经走出国门。

  作为精准医疗的支撑,AI病理市场潜力巨大,规模可达数百亿人民币,但专注于此的创业公司屈指可数,仅有的几家企业的融资轮次最高至A轮,与放射科的医学影像发展判若云泥。

  看似甘甜的果实为何无人采撷?我们不妨从技术、产业等角度进行分析,看看AI+病理到底是一块怎样的土地。

  病理科被“现代医学之父”威廉·奥斯勒称为医学之本,可以说病理诊断的准确与否直接影响着患者的健康和命运。

  数字技术的出现使医者能运用数字技术对病理图像进行摄取、拼接、压缩、储存等,保留高质量图像信息,并结合数据库技术形成数字病理切片系统。这种方式打破了传统病理学在存储、保真性和检索等方面的局限,通过图像的浏览分析来完成病理分析、疾病诊断、远程传输和病理教学等任务。

  人工智能则是基于数字技术的升级,其病理学中的应用包括基于数字图像的细胞学初筛、形态定量分析、组织病理诊断和辅助预后判断等方面。其中蕴含的价值自然不言而喻,仅仅是病理诊断,其中市场便已包罗万象。以胃癌为例,每年有超过2000万人次不得不多次前往病理科进行胃镜活检。初略估计,这一市场规模高达百亿人民币。

  除此以外,病理切片还有更深层次的信息有待挖掘,新药研发、基因甚至还有新的第三方服务模式都在改变着现有的病理科室。

  但这些病理人工智能企业的发展速度无法与影像AI企业相比。虽然每年医院会生产大量病理数据,但这些数据的质量参差不齐,结构与维度上都存在较大的差异。要通过这些数据哺育算法,需经历脱敏、清洗等过程,其中的困难程度可想而知。

  简单而言,之所以没有企业能复制Paige.AI的成功,是因为目前国内没有企业能拥有MSKCC那样海量而标准的病理数据。

  而这一问题正在逐渐化解,第三方医学检测的中心与医院的科研需求正推动着数据以合理的形式流入人工智能,各级从业者越来越重视医疗数据的结构问题。同时,更多细分领域的成果也越来越依托与对病理信息的处理,相关科研发展对于人工智能的需求直线上升,并缓慢的向产品进行转化。

  在科研项目中,经过干预的肿瘤细胞、动物样本和人体样本的形态学会发生相应改变,这种改变需通过特殊的方式予以显示和统计。

  既往研究对于形态学的观察主要集中于肉眼和显微镜,必要时行免疫组织化学或免疫荧光检测协助判断,而后拍照进行人工计数或借助软件统计。上述方法极具主观性,易产生假阳性,重复性差,亟需一种新的手段评价形态学变化。

  ISBI举办的研究者挑战赛评估了深度学习算法检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示深度学习算法诊断的曲线,病理医师诊断的 AUC为 0.724,其中深度学习最佳算法在诊断模拟中的表现优于病理医师。

  深度学习的应用不仅于此,王斐、魏培莲、潘军、武清、于观贞共同著作的《人工智能技术在组织和细胞形态学评估中的应用》详细介绍了现有研究成果下的应用场景。而在产业之中,许多企业正是以这些研究为导向开始了基因、药物研发方向的开拓。

  肿瘤间质比(TSR)是指肿瘤组织内肿瘤细胞与间质成分的比值,主要通过术后病理切片评估获得。

  在结肠癌、非小细胞肺癌、乳腺癌、食管鳞癌、鼻咽癌、宫颈癌、肝细胞癌等实体瘤中。TSR 是影响肿瘤患者预后的独立危险因素。既往主要由医师通过显微镜下观察肉眼判断TSR,大多以 50% 作为间质丰富或缺乏的界定值。

  这种评判标准存在许多问题,一是医师经验决定了TSR的精准性,二是50%的临界值并不一定准确。应用人工智能技术可准确量化TSR,如果肿瘤细胞判断准确,TSR可以精确到个位数。

  论文作者王斐等人的研究小组利用人工智能技术判读某张肿瘤组织病理切片的TSR,可见肉眼判读的 TSR 为 30%~50%,而通过人工智能技术判读的TSR为27.3%,表明人工智能技术在识别肿瘤样本内部特征方面具有明显优势。

  肿瘤浸润淋巴细胞(TIL)是指从肿瘤组织中分离出来的浸润淋巴细胞,富含肿瘤特异性细胞毒性T淋巴细胞和自然杀伤细胞,鉴定和评价肿瘤内部的TIL对于判断预后和指导治疗具有重要价值。AI技术可在其中发挥重要价值,国内企业深思考便是以此为突破设计人工智能产品。

  对于如何定量TIL以及分析它们的空间分布,传统的基于H-E 染色或免疫组织化学染色的分析极具主观性,且耗时费力、准确性差,而AI能够高校准确地运用卷积网络计算淋巴细胞数量与空间分布。

  Saltz 等利用肿瘤基因组图谱TCGA数据库,提出了基于13种TCGA 肿瘤类型的H-E 图像的 TIL映射。这些TIL映射 通过计算染色得到,使用训练好的卷积神经网络对图像进行分类,揭示了 TIL 模式的局部空间结构,并与总体生存时间进行关联。

  第三个定性分析应用是用AI识别神经侵犯淋巴结转移,目前评价神经侵犯的方式仍是显微镜下肉眼观察,易漏诊,且不能反映整张切片的神经侵犯状态。王斐等人的研究小组采用深度学习技术对肝门部胆管癌肿瘤细胞和神经组织分别进行学习和识别,显示了肿瘤细胞侵犯神经组织的全过程,包括肿瘤细胞首先向神经组织聚集,而后侵犯神经鞘膜,然后侵蚀神经纤维,最终沿着神经转移。

  基础研究和临床药效评价会使用细胞和动物模型,药物或基因干预手段对机体和肿瘤的治疗效果和不良反应需通过形态学方法予以展示和评价。传统的基于H-E染色或特殊染色的显微镜下肉眼观察和判读具有局限性。

  痛过深度学习技术学习细胞和动物病变样本的形态学表现,如坏死、出血、淋巴细胞反应、纤维增生、肿瘤形成和数目、血管形成等。这些表现均极具特征性和规律性,因此利用人工智能技术进行药效评价的可操作性强。本研究小组前期构建了胆管癌动物模型,采用不同药物进行干预,然后利用人工智能技术学习该疾病特征,结果表明人工智能技术可清晰显示疾病的发生过程和临床疗效。

  细胞学实验是基础和临床转化研究的基石,但少有研究集中于细胞的形态学变化。伦敦癌症研究所的Chris Bakal教授和 Julia Sero博士使用珀金埃尔默公司的Opera?高内涵成像分析系统获取图像,采用类似于神经网络研究的方法分析了不同治疗条件下数以千计的个体乳腺癌细胞的形态和 理特征,并对线粒体群体的变化和趋势进行了检测。该研究将会在表型筛选和未知药物作用机制的研究中发挥作用。

  一种新的细胞识别和分选系统鬼影细胞测定仪将一种新的成像技术与人工智能技术结合,用于识别和分选细胞。鬼影细胞测定仪以每秒1万多个细胞的速度识别细胞,以每秒数千个细胞的速度对细胞进行分类。

  此外,时间波形与随机模式强度分布的组合使之能在计算机上重建细胞形态,可以直接在压缩波形上应用机器学习而不用进行图像重构,实现高效的基于图像的无形态学细胞检测。这种方法将用于识别和分选患者血液中的循环肿瘤细胞,加速药物 发现和改进基于细胞疗法的疗效。

  评价药物或基因干预效果时,除可使用H-E染色外,还可借助特殊染色辅助判别,包括免疫荧光技术和免疫组织化学技术。其中免疫组织化学技术因具有经济、方便、快速和高通量等特点而应用广泛,但由于技术水平差异和评价体系的局限性,其结果标准性较差。

  由于免疫组织化学染色图像也属于二维图像,特征性明显,人工智能技术非常适合对其结果进行判读和一致性评价。并对染色情况进行自动评分。

本文链接:http://brazil-run.com/dingliangtuxiangfenxi/227.html