我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:王中王 > 定理证明器 >

求初中高中数学中关于三角函数、圆、弧一系列相关知识点的讲解及

归档日期:07-08       文本归类:定理证明器      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  展开全部三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

  六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:

  图像中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。

  对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的周期函数:

  周期函数的最小正周期叫做这个函数的“基本周期”(primitive period)。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π 弧度或 360 度;正切或余切的基本周期是半圆,也就是 π 弧度或 180 度。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数可以定义为:

  在正切函数的图像中,在角 kπ 附近变化缓慢,而在接近角 (k + 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k + 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k + 1/2)π 的时候函数接近正无穷,而从右侧接近 (k + 1/2)π 的时候函数接近负无穷。

  另一方面,所有基本三角函数都可依据中心为 O 的单位圆来定义,类似于历史上使用的几何定义。特别

  是,对于这个圆的弦 AB,这里的 θ 是对向角的一半,sin(θ) 是 AC(半弦),这是印度的 Aryabhata(AD 476–550)介入的定义。cos(θ) 是水平距离 OC,versin(θ) = 1 ? cos(θ) 是 CD。tan(θ) 是通过 A 的切线的线段 AE 的长度,所以这个函数才叫正切。cot(θ) 是另一个切线段 AF。 sec(θ) = OE 和 csc(θ) = OF 是割线(与圆相交于两点)的线段,所以可以看作 OA 沿着 A 的切线分别向水平和垂直轴的投影。DE 是 exsec(θ) = sec(θ)-1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在 θ 接近 π/2(90 度)的时候发散,而余割和余切在 θ 接近零的时候发散。

  圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。根据定义,通常用圆规来画圆。

  把一个圆按一条直线对折过去,并且完全重合,展开再换个方向对折,折出后,这些折痕相交的一个点,叫做圆心,用字母O表示。连接圆心和圆上的任意一点的线段叫做半径,用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。圆心决定圆的位置,半径和直径决定圆的大小。在同一个圆或等圆中,半径都相等,直径也都相等,直径是半径的2倍,半径是直径的1/2。

  圆周率:圆周长度与圆的直径长度的比值叫做圆周率,它是一个无限不循环的小数通常用π表示,π=3.1415926535...,在实际应用中我们只取它的近似值,即π≈3.14(在奥数中一般π只取3、3.1416或3.14159)

  圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧(arc)。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦(chord)。圆中最长的弦为直径(diameter)。

  圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

  扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

  圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

  直线种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

  两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

  在以下几个算式中,“C代表周长”,“S代表面积”,“R代表半径,“D代表直径”。

  ⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。

  圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

  ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

  切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线)经过切点垂直于这条半径的直线)经过切点垂直于切线)圆的切线垂直于经过切点的半径。

  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

  切割线定理 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

  圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

  圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

  经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

  如果b^2-4ac0,则圆与直线交点,即圆与直线,则圆与直线交点,即圆与直线,则圆与直线交点,即圆与直线即直线,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2,那么:

  直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

  【弧度】 #húdù表示角度大小的一种单位。圆心角所对的弧长和半径相等,这个角就是一弧度角。

本文链接:http://brazil-run.com/dinglizhengmingqi/753.html